
Jworker – How it works

Context
Jworker is a Windows [XP] application that communicates with a target STM32F10x MCU via its JTAG
interface. Its main aim is to easily program the targets flash memory.

Jworker may be useful to those with low cost Amontec JTAGKey-Tiny or Olimex ARM-USB-Tiny USB-to-
JTAG devices, containing FT2232C[-compatible] devices, connected between a Windows computer and an
STM32F10x target device.

Implementation References File properties Author
1 Microsoft Visual Basic 2010 Express. ISO link. Download. Installed from an ISO Microsoft

2 FTCJTAG.DLL Zip file. Download. Ver1.9. Non Doc. DLL FTDI

3 AN_110 Programmers Guide for High Speed FTCJTAG DLL Ver1.2. 2009 PDF FTDI

4 Cortex-M3 Revision r1p1 Technical Reference manual. DDIO337E PDF ARM Limited

5 ARM® Debug Interface v5 Architecture Specification IHI0031A PDF ARM Limited

6 IEEE 1149.1 JTAG AND BOUNDARY SCAN TUTORIAL Texas Instruments PDF Dr B Bennets

7 PM0075 Programming manual STM32F10xxx Flash …. Rev1. CD00283419 PDF ST

8 RM0008 Reference manual STM32F101xx …. Rev14. CD00171190 PDF ST

9 Datasheet for STM32F103x8, STM32F103xB …. Rev13. CD00161566 PDF ST

Basic Operation
The STM32 F10x contains 2 Test-Access-Ports(TAPs) in the ‘scan chain’ shown below.

For Both TAPs an instruction register(IR) or Data register(DR) is switched between TDI and TDO by a
boolean parameter of the JTAG_Read/write functions in FtcJTAG.Dll which in turn sends a command on TMS

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031
http://www.amontec.com/pub/amt_ann004.pdf
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/
http://www.ftdichip.com/Products/ICs/FT2232D.htm
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031
http://go.microsoft.com/?linkid=9709969
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/FTCJTAG/FTCJTAG.zip
http://www.ftdichip.com/Support/Documents/AppNotes/AN_110_Programmers_Guide_for_High_Speed_FTCJTAG_DLL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prdc008772b/index.html
http://www.asset-intertech.com/Products/Boundary-Scan-Test/eBook-JTAG-Tutorial
http://www.st.com/st-web-ui/static/active/jp/resource/technical/document/programming_manual/CD00283419.pdf
http://www.st.com/web/en/resource/technical/document/reference_manual/CD00171190.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00161566.pdf

to set the IR/DR-switch. Since TMS goes to both TAPs, both TAPs switches move together and are always in
the IR or DR position at the same time. This means that we consider the combined IRs, or the combined DRs
of both TAPs as if they were one long TAP - with the Debug TAPs register at the least significant end.

The IR for a Boundary TAP is always 5 bits, and always 4 bits for the Debug TAP, the 5+4 bits are combined
into 5+4=9bits between TDI and TDO. So FTCJTAG.DLL read and write functions will clock in/out the
combined IR between TDI/TDO by calling a JTAG_write function with the ‘bInstructionTestData’ parameter set
to True. The values inside the IR pair switch a particular DR pair between TDI and TDO.

For DRs, we call the JTAG_Read/Write routines with the same parameter False, and consider the combined
DRs of both TAPS as one long DR. DRs might have 1+35=36 data bits clocked in via TDI - and out through
TDO. 1bit for the bypassed boundary TAP, 35bits for the Debug TAP – provided that its IR previously selected
was DPACC (1010 binary) or APACC (1011) which are the most frequently access data registers.

Bypassing the boundary TAP
BYPASS really means the DR for a TAP will be a single bit of value 0 so that it can be easily ignored,
especially at the most significant end of a DR pair composed of 1 bypass bit and 35 data bits for the boundary
and debug TAPs respectively.

We don’t use the Boundary TAP. The 1

st
 IR of all IR pairs sent is always the 5bit BYPASS instruction (11111

binary) which means the 1st DR of all DR pairs is always a 1bit of value of 0 – easily ignored.

Accessing the debug TAP
The debug TAP is used. It accesses everything addressable with only IR codes of DPACC (1010 binary) and
APACC (1011) in the 2

nd
 IR of the IR pair.

Example - Accessing a Target Address
To read a 32bit word from address 0x0800:0000 of value known to be 20005000 hex.

Step IR/DR Write to TDI + + + Read from TDO Comment

1
IR
9bits

Bypass
11111 binary

DPACC
1010 binary

Access the top
level debug port

2
DR
36bits

Bypass
0 binary

Data
00000000 hex

APSelect
10 binary

Write
0 binary

Select port0
bank0

3
IR
9bits

Bypass
11111 binary

APACC
1011 binary

Allow details to be
specified next

4
DR
36bits

Bypass
0 binary

Data CSW
A3000022 hex

CSW|
00 binary

Write
0 binary

select 32bit data
size

5
DR
36bits

Bypass
0 binary

<address>
08000000 hex

TAR
01 binary

Write
0 binary

Set the address
to access

6
DR
36bits

Bypass
0 binary

Data. don’t care
00000000 hex

DRW
11 binary

Read
1 binary

Dummy read

7
DR
36bits

Bypass
0 binary

Data. don’t care
00000000 hex

DRW
11 binary

Read
1 binary

Bypass
0 binary

Data sought
20005000 hex

Ack code
010 binary

Access the value
at the address

Explanation. Refer also to the colour coded diagram ahead.

There are 2 main parts.

Steps 1&2 above pre-select port0 and bank0 because it contains 3 registers that specify the address to
access (TAR), the size of the accessed word[s] (CSW), and of course the data at the address (DRW).

Steps 3-7 populate the 3 registers in that bank to specify the address, its word-size, and whether to write or
read the value at the address.

This diagram ahead is figure 2-2 in the ARM Debug Interface V5. With colour coded annotations overlaid. The

colour coding will obviously not be helpful on a monochrome hardcopy.

Copyright © 2006 ARM Limited. All rights reserved.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html

Accessing flash.
Flash addresses are read like any other. However flash addresses are written and erased through the
FPEC (flash programming and erase controller). Flash protection must be off to write to it.

Essentially therefore the Jworker mirrors the flow-charted ST procedures in the PM0075
Programming manual except that each address in the FPEC is accessed in the manner described
above, and unnecessary re-initializations and unnecessary flag re-assertions have been removed to
speed up the procedures commanded through the relatively slow JTAG interface.

Because flash is erased separately from programming JWorker can get away with erasing flash in 1k
blocks rather than establishing what the devices erase block size is. If a devices erase blocks are actually
2k bytes then 2k blocks are erased twice as the start address of each 1k is encountered. The penalty is
low because erasing an already erased block is much faster and may not affect endurance.

Conclusion
Using FTCJTAG.dll you do need to aware of the “TAP Controller State Table Diagram” only to know there are
two basic paths, to set IR or DR, and only one of the six stable resting states is used here– which is the “Run-
Test-Idle” standby state.

There are four levels of status registers. Level1: DPACC-control/status register, level2: APACC-
control/Status register, level3: DHCSR(debug-halting-control/status register), level4: FLASH_SR inside the
FPEC. The last two are just addresses inside the AP (Access port), but since DHCSR can be accessed under
reset, and must have halted the core before changing flash; it’s arguably a higher level than the FLASH_SR. It
is particularly easy to confuse the documentation for the DPACC and APACC control/status registers since
they have the same name and title.

http://www.st.com/st-web-ui/static/active/jp/resource/technical/document/programming_manual/CD00283419.pdf
http://www.st.com/st-web-ui/static/active/jp/resource/technical/document/programming_manual/CD00283419.pdf

Other Information

Translation in VB

References
Quick guide: http://code.msdn.microsoft.com/windowsdesktop/VBWinFormLocalization-966546b3#content
Language codes: http://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx
Google translate: http://translate.google.co.uk/

Method

 a) In the main form designer select the forms surface and in its properties window seek the ones starting
with L i.e. Language and Localizable.

b) Set Localizable to True.
c) Set the forms language property as required; e.g. French. The language is initially ‘default’.
d) Re-type all controls text properties in French.

Take extra care to set the language property BEFORE re-typing all the texts in another language.
When the application is installed on a French computer the application shows the French text. When
installed on an English speaking computer the default English text is shown.

e) In the main forms CODE window, in Sub New(), before the call to InitializeComponent() add the
following:

 With Threading.Thread.CurrentThread
 .CurrentUICulture = .CurrentCulture 'source resource culture from system culture
 End With

Tip
To translate a message-box text one might place a textbox on an unseen part of the form and source the
message box text from it. This way you provide an alternate translation for the textbox as for the other
controls so that its automatic language selection extends to the message box.

Testing

From windows Control panel  Regional and Language Options  ‘Regional Options[tab]; change the
parameter shown below to the language you have supported, click Apply, re-run the app.

http://code.msdn.microsoft.com/windowsdesktop/VBWinFormLocalization-966546b3%23content
http://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx
http://translate.google.co.uk/

The CurrentCulture is sourced from this parameter rather than a parameter in the languages tab. A busy
system may take some time to apply the new settings.

Origin

 Author: Bob Seabrook bob@seabrooks.plus.com www.seabrooks.plus.com
 Specific: http://www.seabrooks.plus.com/jworker/current-download

mailto:bob@seabrooks.plus.com
http://www.seabrooks.plus.com/
http://www.seabrooks.plus.com/jworker/current-download

	Jworker – How it works
	Context
	Basic Operation
	Bypassing the boundary TAP
	Accessing the debug TAP
	Example - Accessing a Target Address
	Accessing flash.
	Conclusion
	Other Information
	Translation in VB
	Method
	Testing

	Origin

