

JWorker
Version 1.0.0.11

 JWorker is a simple JTAG STM32F10x ‘flasher’ written in
Visual Basic .Net Express 2010 using FTCJTAG.DLL and a
low cost JTAG adapter like Amontec JTAGKey-Tiny or
Olimex ARM-USB-Tiny.

Bob Seabrook
9/2/2013

 JWorker

 1

Contents
J-Worker .. 3

User Interface ... 3

Purpose ... 3

Rationale ... 3

Initial Appearance ... 3

Quick Preparation Example – Required before other procedures ... 4

Quick Read Example - Looks at any addressable space. ... 5

Quick Erase Example – Use before programming flash .. 6

Quick Programming Example – Programs flash from binary file .. 7

Quick Save to File Example – Backs-up flash to file .. 8

Quick Verify Example – Compare file with flash ... 9

Quick Blank-check Example .. 10

Advanced Preparation Example – When firmware reconfigures JTAG lines 11

Limitations... 12

Advice .. 12

Help – This Document ... 12

Abort - Stopping JTAG Transactions .. 12

Speed – USB Hubs can be faster ... 12

Compatibility – Amontec and Olimex ... 12

Compatibility – With IWDG Firmware Watchdog ... 13

Reboot Halts Checkbox – Advanced use only ... 13

Clear Button – Illegal Address Accesses .. 13

Status Button – DP-Control/Status Register view ... 13

DHCSR Button – When Code Space is Blank ... 13

Auto Start checkbox – Saves time at Start-up .. 13

Read-protect Checkbox – Prevents flash being read via JTAG ... 13

References .. 14

Other Files Provided .. 14

Un-install ... 14

Upgrade ... 14

Troubleshooting .. 15

Other Information ... 15

Origin ... 15

 JWorker

 2

Disclaimer .. 15

Copyright ... 16

Future Developments ... 16

History ... 16

 JWorker

 3

J-Worker
JWorker is a simple JTAG STM32F10x ‘flasher’ written in Visual Basic .Net Express 2010 using

FTCJTAG.DLL and a low cost JTAG adapter like Amontec JTAGKey-Tiny or Olimex ARM-USB-Tiny.

User Interface

Purpose

Easily program binary files to flash on an STM32 via JTAG.

View STM32 targets addressable space via JTAG.

Backup STM32 targets flash to a binary file via JTAG.

Confirm identity of devices in the JTAG scan chain.

Rationale

Click buttons from top to bottom on the left side of the window. As preparation stages complete

buttons are un-greyed. Once ready, use the other buttons to do tasks.

Initial Appearance

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1031
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/FTCJTAG.htm
http://www.amontec.com/jtagkey-tiny.shtml
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

 JWorker

 4

Quick Preparation Example – Required before other procedures

1. Connect Amontec JTAG-USB-Tiny FTDI/USB based JTAG device between STM32 JTAG interface and

PC’s USB. Check polarity of connectors.

2. Power up target. Remember to power up USB hub if using one.

3. Run JWorker

4. Click Open This connects PC to USB device.

5. Click Scan. If target uses JTAG lines for general purpose i/o hold it in reset state while doing so.

6. Click AP ID Check: 14770011 or 04770011. 00000000 or FFFFFFFF is an error. Non essential.

7. Click Halt - if un-greyed. Core must be halted to un-grey erase/Open(program) buttons.

8. Click kB to establish or confirm SIZE of flash in kBytes. You need to know this.

Here is the appearance after preparation last stage is complete.

Now any of the following can be done

 JWorker

 5

Quick Read Example - Looks at any addressable space.

1. Locate the Read box.

2. If required adjust the Address and number of Bytes. Default is first 32 bytes of flash.

3. Click Read.

4. Wait for bar-graph at foot of display to progress to completion.

5. View Data in data box. Use scroll bar if necessary.

Here is the appearance [example] after clicking Read;

Notice that whilst flash starts at 0x08000000 the SAME flash also appears at address 0 [the alias], so

0 is used here just because it’s simpler.

 JWorker

 6

Quick Erase Example – Use before programming flash

1. Locate the FlashRange box

2. Set the start and size of the range using the ‘From’ and ‘Size’ boxes.

3. Click Erase

4. Confirm OK.

5. Wait for bar-graph at foot of window to reach completion.

Here is the appearance after erasing flash.

Notice Read was clicked again after Erase in order to show that the flash was indeed empty (all FF’s).

After that the flash range was erased AGAIN just to show the ‘Erase Done’ message at the foot of the

window.

 JWorker

 7

Quick Programming Example – Programs flash from binary file

1. Locate the FlashRange box

2. Set the start and size of the range with the ‘From’ and ‘Size’ boxes.

3. Click Program, or drag a binary (.bin) file onto the form and go to step 6.

4. Select binary file to program.

5. Click Open or double-click the filename in the list-view

6. Confirm OK Notice the range programmed is limited if the file is bigger than the range.

7. Wait for the bar-graph at the foot of the window to reach completion.

Here is the appearance after completing the above procedure.

Notes. Read was clicked again after Program in order to show that the flash was indeed programmed

(not FF’s). After that the flash range was programmed yet AGAIN just to show the ‘Programmed…

message at the foot of the window. Notice also that 8kB programmed because the file was 7392

Bytes.

 JWorker

 8

Quick Save to File Example – Backs-up flash to file

1. Locate the FlashRange box

2. Set the start and size of the range to save with the ‘From’ and ‘Size’ boxes.

3. Click SaveAs..

4. Optional: Using the List-View select another folder in which to save the file

5. Type a NEW name for the file at the Filename prompt.

6. Click Save

7. Wait for the bar-graph at the foot of the window to progress to completion.

Here is the appearance after step 7 above.

The SaveAs button is useful to back-up the flash before re-programming it so that the operation is

reversible. Notice that blank flash is saved as byte values of FF.

 JWorker

 9

Quick Verify Example – Compare file with flash

1. Locate the FlashRangeFrom 0x box.

2. Specify the address start of the range to verify. Example1: 0 [start of flash (alias) in hex].

3. Click Verify in the FlashRange box, or drag a binary file onto the Verify button and go to step 5.

4. In the file selection dialog – locate the file to compare and double-click files name to proceed.

5. Click OK in response to the confirmation message.

6. Wait for the bar-graph at the foot of the window to progress to completion.

7. Read the result message displayed upon completion.

Example1: No Differences. Example2: Differences found.

8. Click OK in the result message box.

9. Notice the Verify success or failure is also displayed next to the bar-graph, and that the compare

stops when the first difference is found – which may be before the bar-graph reaches completion.

 Example1: Example2:

 After No Differences. After Differences Found.

 Notice 8kB verified because file was between 7 and 8 kBytes.

 JWorker

 10

Quick Blank-check Example

1. Locate the FlashRangeFrom 0x box.

2. Set the start and size of the range to blank-check with the ‘From’ and ‘Size’ boxes.

3. Click Blank-check in the FlashRange box.

4. Wait for the bar-graph at the foot of the window to progress to completion.

5. Notice the result in the message box and click OK when understood.

Here is the appearance after completing the above procedure.

 JWorker

 11

Advanced Preparation Example – When firmware reconfigures JTAG lines

This method requires the ability to manually hold the targets system reset at 0V during some steps.

Basically this method works by ensuring that the firmware – which interferes with JTAG lines - is

prevented from running by setting the DEMCR.HaltOnCoreReset bit whilst under reset so that on

emergence from reset the target halts and JTAG continues to work. See reference [4] section 10.2.

1. Power-down the target, connect JTAG/USB device between target and PC USB. Check polarity.

2. Start Jworker Application.

3. Manually force the system reset line to 0V and hold it there for the next 2 steps.

4. Power up the target. Keep reset at 0V.

5. Click Open, Scan, and tick Reboot-Halts. Keep reset at 0V.

6. Release reset. Stop holding it at 0V - allow it to go high.

7. Click APID, DHCSR, kB. State should be halted, Flash buttons ungreyed.

Here is the appearance at the end of this procedure. Notice Halted displayed at foot of the window.

 JWorker

 12

Limitations

Multiple instances of the application are not allowed to run at the same time because it is likely that

they would find the JTAG unavailable anyway.

Jworker deliberately avoids changing flash write-protection on the basis that its current protection

settings are for good reason. It is considered that this particular application may be more useful if

kept simple and secure. Read-protection for the entire flash can be enabled and disabled.

JTAG transfers are not fast. Developed for Windows XP 32bit. No Linux version. Unsigned. Four

languages only; English, French, Spanish, Polish. JWorker terminates safely when un-anticipated problems

occur.

System Reset: The ReBoot button can reboot the system. However trying to hold and maintain the

system reset low programmatically during the Open and Scan phase may not be as effective as

manually shorting the system reset low to 0V at this time. This is because targets may not gate the

debug reset with reset from other contending sources [using a 74vhc08 AND to OR the active low

signals]. For this reason the application does not make a futile attempt to hold reset low

programmatically during Open and Scan.

The flash erase procedure always erases 1kB blocks even for bigger memories >128kB where the

erase blocks might be 2kB or 4kB. This may slightly slow the erase procedure but it guarantees the

maximum attainable erase-map resolution for all flash sizes and is only possible because block

erasure is not interleaved with block writes.

The application should be restarted if the JTAG is disconnected and reconnected during use,
otherwise errors will be reported out of context which is misleading.

When using drag and drop, to program and verify, binary files must have “.bin” extension.

Advice

Help – This Document
Click the down-arrow to the right of the bar-graph and click Help from the menu.

Abort - Stopping JTAG Transactions
To abort long ranged operations; click the down-arrow to the right of the bar-graph and click Abort.

This practice is not recommended because it can be misleading if only the start of a range is

programmed or erased or saved.

Speed – USB Hubs can be faster

Connect through a USB hub for faster data transfers.

Compatibility – Amontec and Olimex

 JWorker

 13

The Amontec JTAGkey-Tiny and the Olimex ARM-USB-Tiny work with this software. Other devices

that utilize the FTDI FT2232C compatible range of chips are also likely to work.

Compatibility – With IWDG Firmware Watchdog

An enabled IWDG watchdog is prevented from restarting a core - halted via the debug interface - by

setting bit 8 of the DBGMCU_CR register documented in the STM32F10x Rev14 reference. See

reference [8].

Reboot Halts Checkbox – Advanced use only

As shown in the Advanced Preparation Example above, only tick this checkbox while the target is

under reset since before powering up the target. The aim is to ensure that when reset is released

the target halts before running ANY code that would mess up the normal working of the JTAG lines

by configuring them for general purpose i/o. In other words it is not normally necessary to tick this

box if the firmware does not interfere with JTAG lines.

Clear Button – Illegal Address Accesses

Illegal address accesses cause a latching ‘sticky error’ in the debug interface which is easily cleared

using the Clear button illustrated below. Some operations that access a range will automatically

clear the sticky error before returning control back to the operator. Nevertheless a sticky error can

be present after opening the JTAG port.

Status Button – DP-Control/Status Register view

As illustrated above, when a sticky error is present, data values read as zero and bit 5 of the DP-

Control/Status register is set. See reference [5]; Arm Debug Interface; section 6.2.3 page 6-10.

DHCSR Button – When Code Space is Blank

An attempt to run code from a blank (FF) flash memory harmlessly sets ‘lockup’ bit-19 [0x0008:0000]

of the MCU’s ‘Debug-Halting-and-Control-Register’ [DHCSR]. This is a latching ‘sticky’ bit. The core

remains in the running state. Click the DHCSR button to update the view of the DHCSR. See

reference [4] section 10.2.1 page 10-3.

Auto Start checkbox – Saves time at Start-up

Tick this checkbox so that next time the application is started the Open, Scan AP ID, Halt, kB buttons

are automatically clicked all ready to begin flash operations like Erase or Program. If a problem

occurs – like no target connected - then the procedure will stop at the point of failure allowing you

to fix it and continue manually. The checkbox is only obeyed when the application starts – not every

time the port is re-opened.

Read-protect Checkbox – Prevents flash being read via JTAG

This checkbox allows the targets entire flash to be protected or unprotected from reads via the JTAG

port. Un-protection also erases the entire flash. This is a feature of the STM32F10x. The checkbox

shows the initial and current read-protection status of the targets flash. Changing the checkbox

changes the flash protection which takes effect upon the targets next power-on reset. Users are

http://www.amontec.com/jtagkey-tiny.shtml
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

 JWorker

 14

prompted to apply the power on reset at the appropriate time after changing the checkbox. Do not

change this checkbox - either way- without the targets flash image available on file. When read-

protected the Flash-Range box and Flash kB button are greyed/disabled. Users wishing to protect

their IP may also embrace other STM32 features discussed in this security text.

References
The following external files were essential to make this application. The list may be incomplete. The

PDF documents are not needed to use the application. Hypertext links valid on 1st July 2013.

[] Reference File properties Author

1 Microsoft Visual Basic 2010 Express. ISO link. Installed from an ISO Microsoft

2 FTCJTAG.DLL Zip file. Ver1.9. Non Doc. DLL FTDI

3 AN_110 Programmers Guide for High Speed FTCJTAG DLL Ver1.2. 2009 PDF FTDI

4 Cortex-M3 Revision r1p1 Technical Reference manual. DDIO337E PDF ARM Limited

5 ARM® Debug Interface v5 Architecture Specification IHI0031A PDF ARM Limited

6 IEEE 1149.1 JTAG AND BOUNDARY SCAN TUTORIAL Texas Instruments PDF Dr B Bennets

7 PM0075 Programming manual STM32F10xxx Flash …. Rev1. CD00283419 PDF ST

8 RM0008 Reference manual STM32F101xx …. Rev14. CD00171190 PDF ST

9 Datasheet for STM32F103x8, STM32F103xB …. Rev13. CD00161566 PDF ST

Other Files Provided
8kbinary.bin: This is just a small 8k demo firmware for the STM32F103xx that can be fast

programmed onto the target and read after programming to show typical non-blank data in flash. It

does configure some general purpose i/o lines as outputs [port C bits 4,5,10] so it could damage your

hardware if run using the Go or ReBoot button.

 Details of 8kbinary.bin are beyond the scope of this document. Nevertheless it implements a

virtual serial communications [CDC] so Windows ‘ding dong’ notes play upon USB enumeration] if;

a) the target has been BOTH programmed AND rebooted with 8kloader.bin at address 0

b) the next 8k [at 0x2000 after the 8kbinary] is blank (FF’s).

c) the target has a USB peripheral

d) the target has a USB physical connector and circuit outside

e) the targets USB is connected to an available Windows [XP] USB port.

f) Windows [XP] is already setup using the STM32 CDC driver: ‘stmcdc.inf’ from ST.

Un-install
In windows XP use Add/Remove programs, locate JWorker. Remove it. Use equivalent in other

versions of Windows.

Upgrade
To manually upgrade the Jworker application, first make a note of your existing version [in the title

bar of the Jworker application window] and browse to

http://www.seabrooks.plus.com/jworker/current-download/

Notice the file v10xx which shows the current version number available.

If this version is later than yours then

- download file publish-jworker.zip. [e.g. 1008 is later than 1003]

- uninstall your existing version as described above.

- Install the new version by running the setup.exe in the zip file.

http://www.iqmagazineonline.com/IQ/IQ22/pdfs/IQ22_pgs36-39.pdf
http://go.microsoft.com/?linkid=9709969
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/FTCJTAG/FTCJTAG.zip
http://www.ftdichip.com/Support/Documents/AppNotes/AN_110_Programmers_Guide_for_High_Speed_FTCJTAG_DLL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prdc008772b/index.html
http://www.asset-intertech.com/Products/Boundary-Scan-Test/eBook-JTAG-Tutorial
http://www.st.com/st-web-ui/static/active/jp/resource/technical/document/programming_manual/CD00283419.pdf
http://www.st.com/web/en/resource/technical/document/reference_manual/CD00171190.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00161566.pdf
http://www.seabrooks.plus.com/jworker/current-download/
http://www.seabrooks.plus.com/jworker/current-download/publish-jworker.zip

 JWorker

 15

Troubleshooting
1. Problem - The Program and Erase buttons are disabled, yet other flash buttons are enabled,

 Reason – the target is running code, you cannot erase or program flash that is running code.

 Solution - Click the Halt button on the left side of the window.

2. Problem – All flash box controls are disabled after Open and Scan, so I can’t do anything really.

 Reason – The flash may be read-protected – see the read-protect checkbox in the bottom left.

 Caution – Turning off read-protection immediately ERASES the entire flash.

 Solution – To reprogram the targets flash you must first turn off read-protection.

3. Problem – The ID Codes in the Scan-Chain box are all FFFFFFFF and I can’t proceed further.

 Reason – The target STM32 is not connected to the JTAG port [properly] or it is not powered up.

 Solution – Check the target board is powered and connected. Repower and reconnect.

4. Problem – The AP-ID is 00000000 and other values are 0 when I expected non zero values.

 Reason – A latching ‘sticky’ error occurred in the ARM debug interface so values all read as 0.

 Solution – Click the Clear button and try again.

5. Problem – clicking Scan reports the ID-Codes in the scan chain but I cannot proceed further.

 Reason – Application is Incompatible with the target. IDCode “1 3BA00477” is required.

 Details – More specifically the IDCode for scan-chain entry 1 MUST end with 477.

 Solution – For that target use another application such as the awesome OpenOCD.

6. Problem - The auto-start checkbox has no effect when I click the Open button

 Reason – Auto Start only operates when the application is first started.

 Solution – None. Open is not supposed to invoke auto start sequence.

7. Problem – I see silly ID codes when I click Scan or AP-ID button.

 Reason – Target firmware may be using running and re-using JTAG lines for general i/o.

 Solution – Try the Advanced Preparation procedure discussed on page 11.

Other Information

Origin

Author Bob Seabrook: Bob@seabrooks.plus.com. Web: www.seabrooks.plus.com/jworker . The

author is NOT an authority on this subject. The ware will NOT be maintained after the initial releases

issued in summer 2013.

Disclaimer

This software is not suitable for any specific or explicit or implicit purpose or system and as such the
author or affiliates or associates or providers or service providers can take no responsibility for
losses apparent due to its attempted use in whole or in part.

mailto:Bob@seabrooks.plus.com
http://www.seabrooks.plus.com/jworker

 JWorker

 16

 STM32F10xx’s have a read-protect and anti-tamper facility which should be used where there are
concerns about the exact level of ease with which a chips flash can be copied. Read protection can
be disabled once enabled. Disabling read-protection also erases the flash (see page13).

Copyright

This ware may not be included in whole or in part with any product that sold for currency or barter
except by express written permission from the author. It references and recommends material that
is NOT the work of the author and as such is not entirely the authors to distribute anyway. This ware
must not be used directly in connection with the manufacture or use or promotion of weapons or
military equipment because of the standards in this area.

Future Developments

To handle other file formats because binary files do not include the target addresses which can be

problematic [at build time too] if the image contains a big unused area. This change is unlikely to

happen since a build can usually create files of different formats for example using objcopy in the

GNU tool-chain.

Add an ‘Auto-check’ checkbox in the flash range box to automatically do a blank check before

programming, automatically erase the range if not blank and automatically verify the range after

programming. This change might necessitate a time-stamped log of activity, or at least a completion

time of the last action shown in the status bar. Such a log could even access the 96bit target chip

identification code so there is no doubt about which chip the actions were performed upon.

Allow users to specify some favourite bin file locations rather than relying on the open/save file

dialogues MRU(most recently used) folder pick-list. This has been resolved by being able to drag files

onto the form or verify button.

History

1.0.0.0

1. First version

1.0.0.1

1. Added help – reached as shown in the Advice section of this document.

2. Updated this documentation. General application snap-shots remain not updated for mods 3,4.

3. Moved the Close button outside of the Amontec box so that it is accessible when using an Olimex

dongle.

4. The window title now contains the program name and version rather than name and description.

1.0.0.2

1. Added the verify button to compare a file with the targets flash and report on whether they

match. The number of bytes compared is usually the number of bytes in the file. To save time 4kB

blocks are read from flash and compared before advancing blocks so the operation ends as soon

as a difference is found in a 4k block.

 JWorker

 17

1.0.0.3

1. Retains settings, in particular the range-start and size so that the application can be provided with

defaults appropriate to a recipient, and users can restart with previously used settings.

2. Renamed Reset button to Clear button so as not to confuse with nSRST, nTRST etc. See also mods

3,10.

3. Changed tooltip text for the Read button; replaced ‘Get-ID’ with ‘Clear’ button reference.

4. Internal detail: Changed the size of blocks erased to 1kB regardless of the reported erase block

size that is unreliably estimated from the flash size. This ensures erase will always work at the

possible cost of wasting a small amount of time for big memories where erase blocks are bigger

than 1kB. A further advantage is that the maximum attainable erase-map resolution is achieved

at all times with a simpler method.

5. Stopped the Running/Halted status appearing to change from Halted to Running during

Read/Erase/Save/Verify procedures. It was a result of the status being derived from the Go

buttons enable state when both halt and go were disabled while busy.

6. Added blank check facility and added blank-check documentation to this document.

7. Now that mod 4 is done and the estimated erase-block size is only reported, the reporting of the

estimate has been removed too. Consequently all code to with estimation and reporting of erase

block size has been removed.

8. Renamed the ‘Program..’ button from ‘Open..’. This has the added advantage of distinguishing it

from the ‘Open’ port button.

9. Tightened up validation of hex start addresses given in the read and flash boxes - at the key-

pressed event level.

10. Changed ref to ‘Clear’ button from Get-Id button in 2 warning messages about sticky errors on

accessing illegal addresses.

11. Ensure sticky error is cleared – and an illegal address accessed warning is displayed when the

Read button accesses an illegal address.

12. Simplified the ‘illegal address accessed’ warning from the verbose rubbish that was previously

issued.

13. Added Reboot-Halts checkbox for advanced programming when JTAG used for general i/o.

14. The Scan button now automatically activates the Clear button function because the reboot-halts

checkbox won’t work if there is a sticky error – which Clear resolves. This has allowed the Clear

button to be removed from the preparation procedure step after the scan button. In this light the

Clear button has been moved rightwards since it is no longer one of the essential buttons [on the

left]. See rationale.

 JWorker

 18

1.0.0.4

1. Source code; removed de-activated code. Documented FTCJTAG.DLL calls from AN_110 adding

copyright notice for FTDI.

2. Documentation; added Upgrade section.

3. Added “How it works” to help/abort menu activated from button in status bar at foot of window.

4. Caught the misleading “dll not found exception” in order to report that the underlying FTDI driver

maybe absent [it is provided with the JTAG device e.g. from Amontec/Olimex].

1.0.0.5

1. Updated “How it Works” (internals.pdf) to include an overview diagram and references table at

the start in a section entitled “What are we talking about?”

2. Added an icon to the main form and the project which depicts a lightening flash, which is iconic

[sigh].

3. Upgraded the ftcjtag.dll from 1.9 to 2.0. For 2.0 there are 2 dll files; one for 32bit and the other

ftcjtag64.dll for 64 bit windows. The application attempts to discover the o/s [64 or 32bit] and

use the appropriate dll. The upgrade has been tested on a 32bit system, but has yet to be tested

on a 64bit system. It is understood that the 2.0 upgrade operates with the latest and fastest

ft2232 compatible devices. Owing to no hi-speed hardware implementations at hand, no changes

to the calling code been made to take advantage of this hi-speed just yet, favouring consistent

reliability, but there will be less to do should the need arise.

4. Changed the publish manifest to create a desktop shortcut, since requested by a user.

5. FtcJtag64 .dll v2.0 is displayed in the status bar at the foot of the window if a 64bit version of

Windows is detected – and the 64bit dll is used, otherwise FtcJtag.dll v2.0 is displayed and used.

6. For portability onto 64bit systems; uses system.threading.thread.sleep(ms) instead of kernel32.dll

sleep(ms) when programming flash and rebooting target for 200ms. Especially carefully tested.

1.0.0.6

1. Added ‘Auto-Start’ checkbox to automatically run the preparation procedure [it clicks buttons

Open Scan, AP ID, Halt, Kb] the next time the application starts. Obviously the state of the

checkbox is remembered between runs.

2. Accessibility hot keys added. For example; you can select the ‘Blank check’ button with Alt+B. The

hot key is underlined in the button text when the Alt button is pressed. It seems to be the

prerogative of .Net to makes those underlines disappear when other parts of the form are

greyed/ungreyed. Trivial buttons are not hot keyed so that they are not accidentally selected.

3. The addresses of the registers accessed by buttons DHCSR, kB, SR are displayed in those buttons

tooltips.

4. The 2 buttons ‘Ap Status’ and ‘Dp Status’ are renamed from ‘Status’.

 JWorker

 19

5. The tooltip for the scan box improved to explain more precisely what FFFFFFFF signifies. i.e. no

target connected [or target not powered up].

6. Moved the ‘Blank check’ button upward so next to – and before - ‘Erase’.

7. Changed the menu layout reached from the widget next to the bar-graph so that only Help and

Abort are displayed rather than Help, Abort, How-it-works. Under Help we now have User-Guide,

How-it-works. Further external online help may be accessed here in later versions without

swamping the root menu where the Abort option needs to be identified quickly.

8. Aborted Blank-check and Verify no longer display a message box reporting success or failure so

far.

1.0.0.7

1. Added Read-protect checkbox.

2. Removed [hid] the SR [status register] button and value from the flash box to make way for the

Read-protect checkbox.

1.0.0.8

1. Internal rationalisation.

 (a) Simplified code that turns on/off read protection. The aim is to remove unnecessary ‘just-to-

be-safe’ code to avoid misleading the maintainer as to what is necessary or not.

 (b) Re-wrote function that tests if target flash is currently read-protected. The aim is to access the
FLASH_OBR [option byte register (RO status)] rather than inspecting option-byte0 itself
[@0x1fffF800 in the information block for a value of A5 hex] because the latter – being flash -
also becomes unreadable when read-protection is applied whereas OBR is a proper peripheral
register that’s always readable. However even proper registers fail to read [reading as 0] when
there is a prior ‘sticky’ error, so the function now also clears any sticky error at the start before
reading OBR.

2. Shortened the message displayed when the read protection is changed. The aim is to show two

main things clearly. (a) What has been done [read protected or not], and (b) to make it clear the

user needs to MANUALLY apply a power-on-reset [by repowering or shorting nSRST to 0Volts].

3. Added troubleshooting points 1 to 7 to this document.

4. Added trivial drag and drop to potentially speed-up program and verify operations.

 Drop a binary file (*.bin) onto the verify button to check that file matches the flash range

specified.

 Drop a .bin file anywhere on the application window [except the verify button] in order to

program that file to the flash range already specified.

 In both cases the connection to the target must be opened via the Open and Scan buttons. Read-

protect must be off because the write procedure needs to do some confidence checks to ensure

that the operation is likely to work.

 JWorker

 20

5. The read box is no longer disabled/greyed when the read-protect is ticked. This is because;

 (a) It is re-assuring for users to confirm for themselves that flash-read attempts simply will not

work.

 (b) Some registers and RAM can still be read anyway because flash protection applies to flash

whereas the Read button applies to all addressable space.

1.0.0.9

1. Added a balloon tool-tip at start-up to show what to click for help. Added another balloon tooltip

displayed after scan clicked which informs that a file can be dragged onto the form (if halted) to

program it to flash range specified, or onto the verify button (if not halted) to verify it against the

flash range.

2. The Scan Chain box identifies STR71x TAPs [in addition to ARM Debug TAPs], but because they

[STR71x’s] are; older/obsolete, the public debug interface doc is lacking, and they are so radically

different from the STM32F10x, the STR71x is still not supported and reported as such. Shame.

1.0.0.10

1. Internationalization: Languages supported: English, French, Spanish. Translations were

performed and checked using Google translate so that the reverse translations made the same

(non;)sense as the original English. Message box titles were changed to consistently show the

name of the application.

1.0.0.11

1. Polish translation performed and checked using Google translate so that the reverse translations

made the same (non;)sense as the original English.

	J-Worker
	User Interface
	Purpose
	Rationale
	Initial Appearance
	Quick Preparation Example – Required before other procedures
	Quick Read Example - Looks at any addressable space.
	Quick Erase Example – Use before programming flash
	Quick Programming Example – Programs flash from binary file
	Quick Save to File Example – Backs-up flash to file
	Quick Verify Example – Compare file with flash
	Quick Blank-check Example
	Advanced Preparation Example – When firmware reconfigures JTAG lines
	Limitations

	Advice
	Help – This Document
	Abort - Stopping JTAG Transactions
	Speed – USB Hubs can be faster
	Compatibility – Amontec and Olimex
	Compatibility – With IWDG Firmware Watchdog
	Reboot Halts Checkbox – Advanced use only
	Clear Button – Illegal Address Accesses
	Status Button – DP-Control/Status Register view
	DHCSR Button – When Code Space is Blank
	Auto Start checkbox – Saves time at Start-up
	Read-protect Checkbox – Prevents flash being read via JTAG

	References
	Other Files Provided
	Un-install
	Upgrade
	Troubleshooting
	Other Information
	Origin
	Disclaimer
	Copyright
	Future Developments
	History
	1.0.0.0
	1.0.0.1
	1.0.0.2
	1.0.0.3
	1.0.0.4
	1.0.0.5
	1.0.0.6
	1.0.0.7
	1.0.0.8
	1.0.0.9
	1.0.0.10
	1.0.0.11

